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A Unified Approach to Path Problems

1. Introduction.

A fund.amentaJ. problem in numerical analysis is the solution of a
&

system of linear equations Ax = b , where A is an n x n  matrix of

coefficients, x is an n x l  vector of variables, and b is an n x l

vector of constants. Efficient methods for solving Ax = b , such as

Gaussian and Gauss - Jordan elim ination, have long been known . These

methods have been repeatedly rediscovered and applied in other contexts.

For example, Floyd’s shortest path algorithm [7], which is based on

Warshall’s transitive closure algorithm [32], is a version of Gauss - Jordan

elimination. Kleene’s method for converting a finite automaton into

a regular expression [20] is a form of Gauss - Jordan elimination;

Gaussian eliin.iriation also solves this problem [31. In all these

situations the problem of interest can be formulated as the solution

of a system of linear equations defined not over the field of real

numbers but over some other algebra.

In this paper we provide a unified setting for such problems. Our

goal is to show that a solution to one of them can be used to solve them

aLL. One approach to this task is to develop a minimal axiom system for

which elimination techniques work (see for instance ~Aho, Hopcroft , and

IJiaman [1] and l ehman [21] ) and to show that the problems of interest satiEf y

the axioms. Our approach is somewhat different and resembles that taken

by Backhouse arid Carré [3] ; we believe that the proper setting for such

problems is the algebra of regular expressions, which is simple, well-understood,

and general enough for our purposes.

1
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We shall use a graph-theoretic approach rather than a matrix-

theoretic one because we are interested mainly in sparse problems

(problems in which the coefficient matrix A contains mostly zeros).

Let G be a directed graph with a distinguished source vertex s

The single-source path expression problem is to find, for each vertex v

in G , a regular expression R(s,v) representing the set of all paths

from s to v . The all-pairs path expression problem is to find, for

each pair of vertices v , w , a regular expression R(v,w) representing

the set of all paths from v to w • We shall show that it is pos~ ible

to use solut ions to the single-source and all-pairs path expres~ ion

problems to find shortest paths in G , to solve systems of linear

equations defined on G , and to solve global flow problems defined on 0

We solve these problems by providing natural homomorphism that map the

regular expressions representing path sets into the algebras in which

the given problems are expressed. We define these mappings by reinterpreting

the U , • and * operations used to construct regular expressions. The

technical part of our work is in showing that these mappings are indeed

homomorphisms.

This paper contains nine sections. Section 2 reviews the ~roperties

of regular expressions that we shall use. Section 3 considers shortest

path problems. Section 14 examines the solution of systems of linear

equations over the real numbers. Sections 5, 6, 7, and 8 discuss various

kinds of global flow analysis problems. Section 9 contains some additional

remarks. The appendix contains the graph-theoretic definitions used in the

paper.

2
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2. Regular Expressions and Path Expressions.

Let E Le a finite alphabet containing neither “ A “ nor “ 0
A regular expression over E is any expression built by applying the

following rules:

(la) “ “ and “ “ are atomic regular expressions; for any

a c E  , “ a “ is sri atomic regular expression .

(ib ) If R1 arid ar: regular expressions, then (R1u R 2 ) ,

(R,~.R 2 ) , and (R1) are compound regular expressions.

In a regular expression, A denotes the empty string, 0 denotes

the empty set, U denotes set union, • denotes concatenation, and

* denotes reflexive, transitive closure (under concatenation) .~’ Thus

each regular expression R over E defines a set c(R) of strings

over ~ as follows:

(2a) 
~

(A ) = [
~

) ; a(Ø) = 0 ; ~(a) = [a) for acE

(2b) G(R1UR2) = a(R,~) Ua ( R2 ) = [wtwea (R1) 
or w€a (R

2))

o(R1
.R
2) = a(R~).a(R2) [w1w2 1w 1€a (R1) 

and w
2 c 0(R2)) ;

= 

k O  
~(R1)k 

, where ~~~~ ) O 
= (A) and (~~~)

1 
=

Two regular expressions R1 and R2 are equivalent

if c(R,~) = 0(R 2 ) . A regular expression R is simple if R = or

R does not contain 0 as a subexpression. We can transform any regular

Note that the symbol A represent s both the regular expression ~ A
and the empty string. Henceforth we shall avoid us ing quotation marks
and allow the context to resolve this ambiguity; similarly for ~ , U ,

, * • We shall also freely omit parentheses in regular expressions
when the meaning is clear.

3
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expression R into an equivalent simple regular expression by repeating

the following transformations until none is applicable : (1) replace any

subexpression of the form Ø.R1 or R1.Ø by 0 ; (ii) replace any

subexpression of the form Ø+R1 or R
1+Ø by R1 ; (iii) replace any

subexpression of the form by A

A regular expression R is non-redundant if each string in s(R)

is represented uniquely in R . A more precise definition is as follows:

(3a) A , , and a for a €  E are non-redundant.

(3b) Let and R
2 

be non-redundant.

R1U R
2 

is non-redundant if 0(R
1) n a(R2) = 0

R1
. R
2 is non-redundant if each w c ci(R1

. R2) is uniquely

decomposable into w = w1w2 with w1€ a(R1) and.

w2 € a ( R 2 )

* *is non-redundant if each non-empty w € R
1 

is uniquely

decomposable into w =  wlw2 ...wk 
with w.ca (R

1
)

for l< i < k .

Note that if A c a(R) , then R* is redundant.

Let G = (v,E) be a directed graph. We can regard any path in G

as a string over E , but not all strings over E are paths in G

A p~th expression P of ~~~~ (v,w) is a simple regular expression

over E such that every string in 0( r )  is a path from v to w

Every subexpression of a path expression is a path expression, whose

type can be determined as follows.

14
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( 14) Let P be a path expression of type (v,w)

If P = P1 U P2 , then P1 and P2 are path expressions of type

(v,w)
- 

If ~ = , there must be a uni que vertex u such that P1

is a path expression of type (v,u) and P2 is a path

expression of type (u,w)

If P = P~ , then v = w and P1 is a path expression of type

(v,w) = (v,v)

It is easy to verify ( 14) using the fact that P is simple.

5
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3. Shortest Paths.

Let G = (v,E) be a directed graph with an assoc iated real-valued

cost c(e) for each edge e . A shortest path from v to w is a
k

path p = el,e2,..., ek from v to w such that L c (e . )  is minimum
1= 1

over all paths from v to w • If G contains no cycles of negative

total cost, there is a shortest path from v to w if there is any

path from v to w . The single-source shortest path problem is to find,

for each vertex v , the cost of a shortest path from s to v , where s

is a distinguished source vertex. The all-pairs shortest path problem is

to find the cost of a shortest path from v to w for all vertex pairs v , w

We can use path expressions to solve shortest path problems by means

of two mappings, cost and shortest path , defined as follows.

(5a) cost(A) = 0 , shortest path (A) = A

= = , shortest path(Ø) = no path ;

cost(e) = c (e )  , shortest path(e) = e for e c E

(~ b)  cost(F
1UP2) = minfcost(P1

), cost(P
2) )

shortest path(P1UP2) = if cost(F1) <co st(P2) 
then shortest path(F1)

else shortest path (F2)

cost(p
1
.11
2) = 

~~~~~~ 
+ cost(p

2) ,

shortest path (P
1
.P

2) = shortest path(P1) • shortest path (P2) ;

~~st(P1) = if cost(P1) < 0 then -~~~ else 0 ,

shortest path(P)~~ = if cost(p1) < 0 then no shortest path else A

6
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Lemma 1. Let P be a path expression of type (v,w) • If ~~~t(P) =

there is no path in ~ (P) . If cost(P) = -~~~ , there are paths of arbitrarily

small cost in i(F)  . Otherwise, shortest path(P) is a minimum cost

path in a(P) , and the cost of shortest path(P) is cost(P)

Proof. straightforward by induction on the number of operation symbols

in P .  0

Theorem 1. Let P(v,w) be a path expression representing all paths

from v to w - If cost(P(v,w)) = ~ , there is no path from v to w

If cost(P(v,w))  = -
~~~ , there are paths of arbitrarily small cost from v

to w . Otherwise, shortest path(P(v,w)) is a shortest path from v

to w ; the cost of this path is cost(P(v ,w))

proof. Immediate from Lemma 1. 0

Theorem 2. Let P1(v,w) 
be a path expression such that a(P1(v,w ) )

contains at least all the simple paths from v to w . If there is a

shortest path from v to w , shortest path(P(v,w)) gives one such

path; its cost is cost(P(v,w))

Proof. Any shortest path is simple. 0

By applying Theorem 1 we can use a solution to the single-source

(or all-pairs) path expression problem to solve the single-source (or

all-pairs) shortest path problem. By Theorem 2 it is sufficient to

use path expressions representing only the simple paths if we have a

separate test for negative cycles. The following theorem provides such

a test.



_____________ 
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Theorem ~~. Let s be a distinguished source vertex in G • For every

• vertex v , let P1(s ,v) be a path expression such that o (p 1(s ,v ) )

contains at least all the simple paths from s to v . Then G contains

a negative cycle if and only if there is some edge e such that

cost(F1(s,h(e))+
e(e) < cost(P1(s,t(e)))

I roof. ~3traightforward. See Ford and Fulkerson [10]. 0

8



14. Systems of Linear Eq~iations.

The next problem to which we shall apply our technique is the

solution of a system Ax = b of linear equations over the set ~R

of real numbers [11]. This problem has pitfalls not present in the other

problems we examine. The system Ax b does not always have

a solution; even if it does, the solution need not be unique. Furthermore

the standard algorithms for finding a solution, such as Gaussian elimination,

may not succeed even if a unique solution exists. (To deal with this

difficulty, numerical analysts have devised more complicated algorithms,

such as Gaussian elimination with pivoting [UI.) We shall avoid these

issues by proposing a method that almost always gives a solution when

one exists.

We begin by rewriting Ax b as -b+ (A-I)x = x , where I is

the n xn identity matrix. Let x0 be a new variable; then the

system -b+ (A-I)x x is equivalent to

(1\ fx \ f x  ~ f a  o
( 1 + A ’ i 

0
1 = ( O

j , where A’ =~\ 0 J  ~~x ) ~~x )  \~-b A-I

and. 0 denotes a zero matrix of the appropriate size. Let G = (V,E)

be the graph having n+l vertices (one for each variable x~ ) and m

edges (one for each non-zero entry in A’ ) such that there is an
edge e with h(e) = v. and t(e) = v. if and only if the entry in

row i and column j of A’ is non-zero; let a(e) be the value

of this entry. Then the system of equations takes the form

(6) x (s) = 1 ; x (v) = L [a (e)x(h (e)) ecE and t(e) = v) if v s ,

where s = v0

9 
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We solve this system by extending the mapping a to regular

expressions cver E as foflows.

(7a) a( A) = 1 ; a(~ ) = 0

(7b) a(R1UR2) = a(R1)+a (R2)

a(R1~R2) = a(R1)a(R2)

a(R ) = l/(l- a(R1) )

Note that a(R~) is defined if and only if a(R1) ~ 1 . If R

is a regular expression over E , then a(R) is a rational function of

a(e1
), a(e2),...,a(e ) and is defined except on a set of measure zero

- Note also that the operation of addition into which union is

mapped is not idempotent . This forces us to deal only with non-redundant

regular expressions.

Lemma 2. If H1 and H
2 

are two equivalent non-redundant regular

expressions over E , then a(R1) = a(R2) 
whenever both a(R1) and

a(R2) 
are defined.

Lemma 2 is the hardest result in this paper, and we shall postpone

its proof.

Theorem 14. For each vertex v , let P(s,v) be a non-redundant path

expression representing all paths from s to v . If a(P(s,v)) is

defined for all v , then the mapping x defined by x(v) a(P(s,v))

salisfies (6).

10



Proof. The only path from s to s in G is the empty path; by

Lemma 2, x(s) = a(P(s,s)) = a (A )  = 1 . If v s , then

U [P(s,h(e)).e I ecE and t(e) = v) is a non-redundant regular expression

representing the set of all paths from s to v . By Lemma 2,

x(v) = a(P(s ,v ) )  = a( U [P(s,h(e)).e e~E and t(e) = v}

= ~ [a(e)x(h(e)) ecE and t(e) v) .

Thus the mapping a almost always gives a solution to (6). It

remains for us to prove Lemma 2. We employ Salcmaa’s method for showing

the completeness of an axiom system for regular expressions [28]. We

shall use the notation Q. R to denote that 0(Q) = a(R) and a(Q) = a(R)

wherever both a(Q) and a(R) are defined. A non-redundant regular

expression Q is eguationally characterized in terms of non-redundant

regular expressions if Q = Q1 and

(8) . e~
) 

U D ( ~~ ) where D(~~~) € [Ø,~
) and

Qj~~c [Q~~I 1 < k < q) for a.ll j

Lemma 3. Every non-redundant regular expression over E is equationafly

characterized.

Proof. By induction on the number of operation symbols in the regular

expression.

f m f m
U ; A E  I u 0 e . l u A

~ j=l

11
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e . ~
.e

1U . . . u A .e . U . . . U 0 . e U 0  for 1< j  < m

Thus every atomic regular expression is e~juationally characterized.

Suppose Q and R are equationally characterized. Let

be non-redundant regular expressions such that Q = Q1 and (8) holds.

Let B1,..., R be non-redundant regular expressions such that R =

and (9) holds.

(9) 
(j ~ l 

R . . .e
.)  U D ( R~ ) where D(R ~ ) € [Ø,~

) and

R
~j

€ [R
~~I l < k <r )  for all 

~

We shall equationally characterize QUR , Q.R , and Q , assuming they

are non-redundant.

Let 1 < U < q , 1 <v < r , and suppose Q~ UR is non-redundant.

Combining (8) and (9) we obtain

(10) ~~~jR 
(J~

l 
(%jUR vj).ej) 

UD(
~~

)UD(RV)

(j~~ 
(
~~j

URvj
).e
j) 

UD(
~~~

URv) ‘

since if a(~~) fl 0(R ) = 0 , then D(~~) = 0 or D(R ) = . Furthermore

~~ U R vi is non-redundant for 1 < j < m • Thus if QIj R is

non-redundant, the set of equations (10) such that Q~ UR is

non-redundant equationafly characterizes Q!JR = Q1UR 1

Let l < v < r , 5 > 0 , and l < u1 <u 2 < ...<u5 < q .

Suppose Q•Rv U (~ ~ is non-~redundant. If D(R
~
) = 0 , we

obtain from (8) and (9) that

12
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(U) Q.R
~u (

~ % )  (~~~
(Q.R

~~ u ( ~~ %j)).ej) 
u (~ 

D(Q
~~))

(~~
1(Q.R~~u ( i~1 

%~.i) )  
.e

j )  
u D(Q.R~u (i ~

Furthermore Q•R,~~u ( u  i~~~~
) 

is non-redundant for 1 < j  < m • If

D(R) = ~~, , we obtain fran (8) and (9) that

(12) Q R
~ U (~ ~) ~ (~ (~~ Rvj u u (~ ~)) . e~~) 

U D(~~)

U 
(j~~ 

D(% ))

a 
(~~~ (Q.Ici u Qii u (~ ~~~ .) ) .e j )

( f s
UDI Q•R~~U ( U

~~i=l i

Furthermore Q.R.~ U U (~ ~~~j 
is non-redundant for 1 < j < m

It follows that if Q.R is non-redundant, we can equationally characterize

f q
Q.R = Q.R1 in terms of 

j~
Q.I~~U ~ %. ) I1~~’~~r , 5<0 , 1<u,~<u~ < ... < u < q,

1=]. 1 f q
and Q•R U j U 1 is

~~i=1 i)
non-redundant -

* *Finally we must consider Q . Suppose Q is non-redundant .

Then D(Q) = 0 • Fran (8) we obtain

13



(3.3) Q a ( U ~~~~~.3 3

f m  
*a U Q .Q1.~.e I U A3 i f

Furthermore is non-redundant for 1 < j  < m

Let s~~~ 1 and l <u
1 < u 2 < . . . < u< q Suppose Q - (  U

~~ =1
is non-redundant. If D(Q~1 ) = 0 for 1 < i < s , then

~~f s  f m 
~~~~(11~) ~~~ •

~~~ 
Q~ J a U Q .( 

•U1/  ~j=l ~i=l i

~~ f s
where Q ( U . is non-redundant for 1 < j  < m

~ i=l i~ /
If D(Q

~~ ) = A for some (uni que) I such that 1 < i < s ~ then

~~f s  ~ ~~m 
~ f f s(15 ) 

~~~~ 
Si. ) 

a~~u Q •~~ Q1.U 
~ i~l ~~1i) )  

~~ 
U A

( s
where Q • Q1. U I U . is non-redundant for 1 < j < m . It~ \. i=i i~

*follows that we can equationally characterize Q in terms of

[Q*)U (Q
*. 
(i~1 ~) Is>1 , ~~~~~~~~~~~~ < u < q, and Q*• (~ ~)

is non-redundant . 0

We are now ready to prove Lemma 2. We extend 
~~ 

, • , a to ordered
pairs of regular expressions by defining (Q~,R1) U ( ~~,R ) = (Q1u~~~, Ri t H 2 ) 

‘
= ( y Q2~ Ri .H2 ) ‘ (~ 1,R1) a if and only if

and R
1~~~R2 .

114
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Proof of Lerrmia 2~ Suppose Q and R are non-redundant regular

expressions such that a(Q) = 0(R) . Let Q, H be characterized in

terms of [Q~ 11 <  i < q3 , [R~ ( 1 < 1 <  r) by (8), (9), respectively.

We construct a set X of pairs (%~R )  such that a(%) = 0(R )

We begin with X = [(Q,R)) . We process pairs in X and add new

elements to X until all pairs in X are processed. We process a

pair (Q~,R~) as follows. By (15) and (16 ) we have

a (
~ 

(%j,~~~j ) .( ej ,ej ) )) U (D( Q
~

), D(R
~

) )

Since a(%) = 0(R ) , we have D(%) = D(R ) and a(%~) = a(R .) for

1 < j  < m • We add each pair ~~~~~~~~~ for 1 < j  < m to X if it

is not already present.

We obtain a set of pairs X = ~~~~~~~~~~~~~~~~~~~~~~~~~~ such

that s < q r , ~~~
1)

a R
(
~~ ) for l< i < s , and

a u (Q(i),R
(i)).(e ,e)U (D ,D )  , where each pair

j =l ~ ~ 1

(Q(i) ,R (1) ) appears in X • 

m
Consider the system of equations x~ = E a(e . )x 1. + a(D

~ ) ,
j = 1  ~

where xj~ = x~ if Q
(1) 

= Q(k) 
• Thi s system is satisfied by

x . = a(Q~~~ ) if a(Q~~~ ) is defined for 1 < i < s and by x . = a(R (1) )

if a(R (1) ) is defined for 1 < i < s • We can rewrite this system as

x = Ax+b , where each entry in A is a linear combination of

, or equivalently as (A-I)x -b . This system

has a unique solution when the determinant of A-I is non-zero, which

is true except for values of a(ei), a(e2 ) , . .., a(em ) forming a set of

15
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measure zero in rRm 
• Thus ~ (Q~~~ ) a(R~~~ ) for 1 < i < s except

on a set of measure zero. In particular a(Q) = a(R )  except on a set

of measure zero. Since a(Q) and a(R)  are rational functions of the

a(e
~

) ‘ 5, a(Q) = a(R)  when both are defined. L

16



5. Continuous Data Flow Problems.

Many problems in global code optimization can be formulated as

path problems of the kind we are considering. The general setting is

as follows. We represent a computer program by a flow graph

G = (v, E, s) . Each vertex represent s a basic block of the program

(a block of consecutive statements having a single entry and a single

exit). Each edge represent s a possible transfer of control between

basic blocks. The start vertex s represent s the start of the program.

We are interested in determining, for each basic block, facts which

must be true on entry to the block regardless of the actual path of

program execution. Such facts can be used for various kinds of code

optimization. See Aho and Uliman [21, Hecht [114], and Shaefer [25].

To represent the universe of possible program facts, we use a set

L having a ccmnnutative, associative, idempotent meet operation A

such an algebraic structure is called a lower semi-lattice. If x and y

are two possible program facts, x A y represents the information common

to both . We can def ine a relation < on L by x < y if and only i±~

x~~y = x . The properties of A imply that < is a partial order

on L [27] ; we interpret x < y to mean that fact y contains more

information than fact x . We shall assume that L is complete, by

which we mean that every subset X c L has a greatest lower bound with

respect to < ; we denote this greatest lower bound by AX • If

X = ~x1, x2, .. ., x~ ) , then A X  x1 A X
2 

A . . .  A X  • We use .~. 
to denote

A L  , i.e., the minimum element in L • For any functions f and g

having common domain arid range L , we define f < g if and only if

f (x)  < g(x)  for all elements x in the domain of f and. g

17
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To represent the effect of the program on the universe of facts,

we associate with each edge e a function 
~e such that, if fact x

is true on entry to h(e) and control passes through edge e , then

will be true on entry to t ( e )  . We can extend these functions

to paths by defining f~ (x) = x if p is the empty path,

f (x) = 
~~e ~e ° 

~e ) (x) if p = el,e2,..., ek . What we want
k k-i 1

to compute is A [f~(~) p is a path from s to v) for each vertex v

(We assume the iminimum fact .i. is true on entry to the program. )

This di scussion motivates the following definitions.

A continuous dat a flow framework (L,F ) is a complete lower semi-

lattice L with meet operation A and, a set of functions F: L —. L

satisfying the following axioms:

(16a) (identity ) F contains the identity ftnction ~
, •

(16b ) (closure ) F is closed under meet, function composition, and * ,

where (fAg)(x) = f(x)Ag(x) and 
*( )  = A [ f (x) l~ >0)

(16c) (continuit y) For every f E F  and x ~~ L , f( A x)  = A [f(x) I X E X )

A continuous data flow problem consists of a flow graph G = (V, E, s) ,

a continuous data flow framework (L,F) , and a mapping from E to F

we use 
~e to denote the function associated with edge e • The meet

over all paths (MOP) solution to this problem is the mapping mop from

V to L given by ~~~ (v) = A [ f ~ (.~) ~~ 
is a path from s to v)

We can use path expressions to solve continuous data flow problems

by means of the mapping f defined as follows.

18
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(17a) f(A) = ~-

f ( e ) = f .

(17b) f(P1U P2) = f(P1)Af(P2)

— f(P2) ~ f(P )

f(p*) f(p )*

Lemma 14. Let P 
~ 0 be a path expression of type (v,w) . Then for

all x c  L , f (P ) ( x )  = A [f ~ (x) I p c o(p))

Proof. By induction on the number of operation symbols in P • The

lemma is immediate If P is atomic. Suppose the lemma is true for

path expressions containing fewer than k operation symbols, and let

P contain k operation symbols. We have three cases.

Suppose P = P
1U P2 • Then

f(P)(x) f(P1)(x)A f(P2)(x) = (A[f~(x) I p€ o(P
1)))A (A {f~(x) Ip € c(P2)))

= A[f~(X) lx e a(P
1)U

a(p
2)1 = A [ f ~~(X) I~~ °(~))

Suppose P = P1.P2 . Then

f(P) (x) = f(P
2
)(f(P

1)(x)) = f(P2 ) ( A t f  (x) l p i o a(Pi) ) )p1

= A [f(P2)(f~~(x)) lp1
e cJ(P1)) by continu.ity

= A [ A [ f ~~~~ (x) 1 p2 € 0 ( P2 ) ) 1 p1c 0(P1) )

= A [ f ~~~~~ (X) ) p1€ o(P1) and p2 e a ( P 2 )3  = A t f~(x) I~~~
(
~)) .

19
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Similarly we can show that if P
1 

has fewer than k operation symbols

then f(P1)
1
(x) = A [~~(x) p € o(P

1)~
’) for any I > 0

Suppose P = P1 . Then

f ( P ) ( x )  = f~~~~*() = A [f(P1)
1
(x) I~ > 0)

= A [A [f (x) 
~ 

p c  a(P1) ’) Ii > 0) = A [f (x) I pe o(P~ ) )

Theorem 5. For any vertex v , let P(s,v) be a path expression

representing all paths from s to v . Then mop (v) = f(P(s,v))(i)

Thus we can use a solution to the single-source path expression

problem to solve continuous data flow problems. For examples and extensive

discussions of such problems see Cousot and Cousot [5], Fong, Kam, and

Uflman [ 9 ] ,  Grah am and Wegman [13], Kam and Uflman [16,17], KildaJ..l [19],

and Rosen [23] .
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6. Monotone Data Flow Problems.

Many important global flow problems are not continuous [17]. For

such problems there is in general no algorithm to compute the meet over

all paths solution [17], and we ~ust be satisfied with less information

than the MOP solution provides. In such situations the following approach

is appropriate.

A monotone data flow framework (L,F) is a complete lower semi-

lattice L with meet operation A and a set of functions F: L -. L

satisfying the following a.xioms:

(18a) (identity) F contains the identity function ~

(18b ) (closure ) F is closed. under meet and function composition .

(18c) (monotonicity) For every f € F and x,y € L , x < y implies

f(x) < f(y)

(18d) ( approximation to f* ) For every function f c F  , there is

a function f~ € F such that

(i) f~(x) < f1(x) for all x c L  , I > 0 ; and

(ii) if x,y€L satisfy f(x)Ay>x , then f~ (y) >x

Monotone frameworks generalize continuous frameworks by requiring only

monotonicity (l8c) in place of continuity (16c) and by requiring only a

*p:eudo transitive closure function. Note that f is the maximum

function satisfying (l8d).

A monotone data flow problem consists of a flow graph G = (V,E,s) ,

a monot one data flow framework (L, F) , and a mapping from E to F

whose values we denote by f for e ~ E • A fixed point for this problem

ic a mapping Z :  V -. L such that

21



(19) :(s) = j. and 
~~~~~~~~~~~ 

> z(t(p)) for any e c E

A safe solution to the data flow problem Is a mapping X:  V -. L such that

(1~CL , x(v) < f~ (~~) for any vertex v and any path p from s

to v ; a nd

(~~ b)  x(v) > z(v)  for any fixed point z and any vertex v

F-
Thus a safe solution is a conservative approximation to the MOP solution ~~ich

i~; at least as informative as any fixed point. It is easy to prove that

any fixed point satisfies (20a); if the data flow problem is continuous,

the MOF solution is the maximum fixed point [19].

We can use a slight variant of the mapping defined in Section 14 to

compute a safe solution to a monotone data flow problem. Let f be

defined as in (17), except f(P1) =

Lemma 5. Let P ~ ~ be a path expression of type (v, w) . Then

f ( P ) ( x) < f~ (x) for all p € S ( P )  and x€ L

Proof. By Induction on the number of operat ion symbols in F • The

lemma is immediate if P is atomic. Suppose the lemma is true for path

expressions containing fewer than k operation symbols, and let p

contains k operation symbols. We have three cases.

Suppose P = P1 U P2 and p € P . If p € P
1 

then

f( P ) ( x )  = f(P1)(x)Af (P2)
(x) ~ ~(~~) (~) < f~ (x) by the induction hypothesis;

.imilarl,y if p € P
2

22
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Suppose P = P
1
.P
2 

and p = p1p2 with p1 € P1 , p2 € P . Then

f(P)(x) = ~‘(P2)(
±’(~1)(x)) < 

f(P2)(f (x)) < (f o f  ) (x )  f (x)p
2 

p1

by monotonicity and the induction hypothesis.

Suppose P = P~ and p = p1 p2 
... with € P1 for 1 < i < k

Then

f( P) (x) = f(P1)~ (x) < f(p~ ) ’~( x) by (8d)(i)

< f~ ( x) by monotonicity and the induction

hypothesis, as above. ~

Lemma 6. Let P 
~ 

be a path expression of type (v,w) . If z is

any fixed point, then f(P)(z(v)) 
~ 

z(w)

Proof. By induction. The lemma is immediate if P is atomic. Suppose

the lemma is true for path expressions containing fewer than k operation

symbols, and let P contain k operation symbols. We have the usual

three cases.

Suppose P = P1UP2 . Then f(P)(z(v) ) = f(P1)(z(v))A f(P2)(z(v))

~ 
z(w) by the induction hypothesis.

Suppose P = P
1
.P
2 
. Let u be the vertex such that P

1 
is of

type (v,u) and P2 
is of type (u,w) . Then f(P)(z(v)) =

> f(P2)(z(u)) ~ 
z(w) by the induction hypothesis.

Suppose P = P~ . By the induction hypothesis, f(P1)(z(v))Az(v)

~ 
z(v) . By (8d)(ii), f(P)(z(v)) = f(P1)~ (z(v)) > z(v) . 0

23
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Theorem 6. For each vertex v , let P(s ,v) be a path expression

representing all paths from s to v • Then the function x: V -. L

defined by x(v) = f(P(s,v))(j) is a safe solution.

Proof. By Lemma 5, x(v) = f(P(s,v))(.i.) < f~(~ ) for all p€S (P(s,v) )  ;

thus x satisfies (20a). Let z be any fixed, point. By Lemma 6,
x(v) = f(P(s,v))(j) = f(P(s,v))(z(s)) > z(v) ; thus x satisfies (20b).

214
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7. Bounded Dat a Flow Problems.

Most interesting dat a flow problems satisfy a stronger condition on L

than completeness, called the descending chain condition; every descending

chain x,~ > x2 > x
3 > ... in L is finite. For semi-lattices satisfying

the descending chain condition, continuity is equivalent to distributivity:

f ( x A y )  = f (x) A f (y)  for all f’€F and x, y€ L  . Our continuous data

flow problems are thus a generalization of the distributive dp ”~a flow

problems considered by I~Llda1]. [19]. Although most global flow problems

satisfy the descending chain condition, some, such as type checking [33],

do not.

If the set of functions F in a dat a flow framework satisfies a
*boundedness condition, then we can compute an approximation t to f

for any function f€F using only function meet and composition. If

the framework is continuous as well, it is possible to compute the MOP

solution from a set of path expressions representing only some of the

path s from the start vert ex. We shall consider a hierarchy of boundedness

axioms. For k 1 , a k-bounded data flow fr amework (L,F) is a

complete lower semi-lattice L with meet operation A and a set of

function s F: L -. L satisfying identity (iBa), closure (i8b),

monotonicity (l8c), and

(21) ( k-boundedness) f~~(x) > A [f 1(x) I 0 < I < k-i) for all f€ F and x€L

For k 
~ 

1 , a k-semi-bounded dat a flow framework (L,F) is a complete

lcwer semi-lattice L with meet operation A and a set of functions

F: L -. L satisfying (18a), (18b), (lBc), and

(22) (k-semi-boundedness) fk (x) � ( A  [f 1( x) 0 < I < k-i))  A f
k (y)

for all f€F and x, y € L

25

- -~~~~~-
, - - .

~~~~~~~



~ -—- - -~ —- --- - 

~~~

-—-

~~~~

- -

~~

--

~~~~~

-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘-

~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~ 

‘

We defi ne k-bounded and k-semi-bounded dat a flow problems in the

obvious way. It is easy to show that k-boundedness implies k-semi-

boundedness and k-semi-boundedness implies (k+l) -bounded .ness.

Boundedness, being a property of F and not of L , is neither

stronger nor weaker than the descending chain condition. The k-bounded

and k-semi-bounded data flow problems include some, but not all, of the

global flow problems mentioned in the literature. Problems that use

bit vectors, such as finding available expressions [31] and finding

live var iables [18] are 1-semi-bounded but not 1-bounded. Problems

that use “structured partition lattices”, such as common subexpression

detection [9,16,19], are 2-bounded but not 1-semi-bounded. Type checking

[33 1 is not k-bounded unless some bound is artificially imposed.

Lemma 7. In a k-bounded data flow framework (L,F) ,

* if = A [f 0 < I < k-l) for all f€F

Proof. We prove by induction on j  that if j  > k

f3(x) > A [f
1
(x) 10 < I < k-i ) for all fEF and x€L . The claim

is true for j  k by k-bounded,ness. Suppose j  > k and the claim

is true for j-1 . Then

f~(x) = f~~~(f(x)) ~ 
A [f 1(x) 1 < I < k) by the induction

hypothesis

> A [f ”(x) 0 < I < k-i) by k-boundedness.

The lemma follows from the claim. 0

Lemma 8. In a k-bounded data flow framework (L, F) , the function

defined by ±~~ (fA ~~)
k_l 

for f€F satisfies (l8d).

26 
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}~roof. By repeated use of monotonicity, we obtain

f~ (x ) = (f A ~,)
k_l

(x) < A [f1(x) 0 < I < k-i) , which implies ( 18d)(i)

by Lemma 7. We prove by induction on j  that if f ( x ) A y  � x ,

then (f ~~~.) i (y)  > x • The result is immediate for j  = 0 • Suppose

( f A z , ) (y) > x • Then ( f A z . .)~~(y ) > f (x) t~x > x . Thus

f ( x ) A y  > x implies 1~~(x) = (fAi.)
1
~~~(x) 

~ 
x , and (l8d)(ii) holds. ~

If (L, F) is a k-bounded data flow framework and f€F , we can

compute f* using 0(k) function meets and compositions by Lemma 7.

We can compute an approximation to f* in O(log k) function meets and

compositions by Lemma 8. (We trad e accuracy for time if we compute f’~

instead of f . )  Theorem 6 thus gives a method to solve bounded

data flow problems using only function meet, composition, and application.

Suppose (L,F,G,f) is a data flow problem which is not only

bounded but continuous. In this case = f , and we can compute

the MOP solution using only function meet , composition, and application,

with O(log k) such operations replac ing each * . We can also use

path expressions representing only some of the paths from s , as

demonstrated by the next results.

Lemma 9. Let (L
~F~G~

f e ) be a k-bounded continuous data flow problem.

Let v be a vertex in G and let p be a path from s to v that

is not k-simple. Then there is a set S of paths from s to v such

that each path in S is shorter than ~ and f~ ~ A [f q I q€S)

Proof. If p is not k-simple, then p contains some vertex u at

least k+l t imes. Let p = p0 p1 p2 ... , where each p1 for

1 < i < k is a cycle from u to u . (Both p0 and p~~,1 may be

the empty path.) Then

27
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~~~~. ~ 
o (A f f  I 1 < i < k) ) k e f by continuity

F 
~k+l ~i PD

f OA (( A [f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k+l ~i 0

by k-boundedness

~ A [f q I = p0 q1 q~ ... q1 ~k+1 where 0 < I < k-i

and qj € f P 1 I l < i < k )  for l < j < I )  .

Corollary 1. Let (L
~F~ G~

f e ) be a k-bounded continuous dat a flow problem .

Let v be a vertex in G and let p be a path from s to v . Then

~
“ I ~ is a k-simple pat h from s to v )

Proof. By induction on the length of p using Lemma 9. ~

Theorem 7. Let (L,F,G,f ) be a k-bounded continuous data flow problem .

For each vertex v , let Pk (s ,v) be a path expression such that

S(P k(s ,v ) )  contains at least all the k-simple paths from s to v

Then ~~~(v) = f(Pk(s,v))(i) , 
where f is defined as in Section 5.

Proof. Inunediate from Lemma ~ and Corollary 1. 0

Lemma 10. Let (L
~

F
~ G~

f e ) be a k-semi-bounded continuous dat a flow problem.

Let v be a vertex in G and let p be a path from s to v which

is not k-semi-simple. Then there is a set S of paths from s to v

such that each path in S is shorter than ~ and f~ ~ 
A [f q I q€ S) .

I 
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Proof. If p is not k-semi-simple, then p can be partitioned into

p = p0 p1 p2 p3 ~k+2 ~k+3 ~ where p1 and p1 for 3 < i < k+2 are

cycles, and p0 , p2 , are possibly empty. Then

f > f o (A j f 1 3 < i < k+2))k o f by continuity
k+3 i Op12

> f  0 A [ ( A [ f 13 < i < k + 2 ) ) J j O < j < k . . l ) o f
k+3 i

A f o ( A  [f 13 < i < k+2)) ’~ e f by k-semi-bowidedness
~k+3 ~i

and continuity

� ( A  [f q q = p0 p1p2 q1q2 ... ~2 P~÷3 where 0 <  1 < k-i

and € [ ‘ i. 13 ~ i ~ k+2 ) for 1 ~ i ~

A ( A  [f q q = p0 p
2 q1 q2 ... ~~ P~÷3 where q~ € ~~ 13 < I < k+2 )

for l < j < k ) )  . 0

Corollary 2. Let (L, F, G, f~ ) be a k-semi-bounded continuous data flow

problem. Let v be a vertex in G and let p be a path from s to V

Then f~ � A t~ q q is a k-semi-simple path from s to v )

Proof. By induction on the length of p using Lemma 10. 0

Theorem 8. Let (L,F,G, f )  be a k-semi-bounded continuous data flow

problem. For each vertex v , let P~ (s,v) be a path expression such

that S(p~ (s,v ) )  contains at least all the k-semi-simple paths from

s to v . Then ~~~ (v) = f (P~ (s,v))( .i . ) , where f is defined as in

Section 5.

29
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Proof. Immediate from Lemma 14 and Corollary 2. 0

Corollaries 1 and 2 require continuity ; in fact , the MOP solut ion

is not effectively computable in a general 2-bounded monotone dat a

flow problem [17]. See Kern and U1IMRYi [16 ] aM Tarja.n (29] for further

di scussion of the effect of b oundednezs on global flow analysis.

30
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8. An Idiosyncratic Data Flow Problem.

As a final application of our technique, we shall consider a dat a

flow problem that does not fit naturally into the semi-lattice

framework, but that can still be solved easily using a mapping from path

expressions. The problem arises in the optimization of very-high-level

languages and has been studied by Fong [8].

Let G = (V,E, s) be the flow graph of a program which contains

occurrences of an expression g • With each edge e of the program

is associated an effect, which has one of four values depending upon

wh at flow of control through edge e does to the value of e

gen the program recomputes e

kill the program makes a large change in the value of ~ef fec t (e)  = if
injure ( the program makes a small change in the value of ~

trans J the progr am does not affect the current value of ~

For any vertex v , we say e is implicitly available on entry to v

if there is a positive bound b such that, for every path

p = el, e2,...,ek from S to v , there is an. i such that

(I)  effect(e . )  = gen , (ii ) effect(e .) ~ kill for 1 < j  < k

and (iii ) the number of values j  such that i < j  < k and

effect(e~ ) = injure is bounded by b . Not e that the bound b can

depend upon the vertex v but not upon the path p

The problem we wi sh to solve is to determine from (effect(e) e € e)

the vertices at which ~ is implicitly available. The Idea is that if

the most-recently-computed value of g can be injured only a bounded

number of times before entering v , we can compute the value on entry

3].
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to v fr om the most-recently-computed value by performing a bounded

number of updates. Otherwise, we must completely recompute ~~. to obtain

its value on entry to v •

Fong [8] claims that thi s problem cannot be formulated within the

semi-lattice framework, ‘e at least in the only natural choice of semi-

lattice. ” However, Fong observes that the problem can still be solved

efficIently. We shall define a mapping from path expressions for this

purpose.

Let D = [g, t0,t~ ,w) be a set having operations A , , ~ defined

by the following tables.

A g t0 t÷ w 0 g t0 t÷ w 
— __

g g t0
t~ w g g g g ~ g t

0

t0 
t0 t0 

t~ u~ t
0 

g t0 
t~ w t0 

t0

t÷ t÷ t÷ t~ w t÷ g t~ t÷ ~ t÷ w

w w w w w g w w w w w

Let the mapping f from path expressions to D be defined as follows.

(~ila ) f ( A )  = t0

1~~~~
W I  J kill

f( e )  ) if ef fect (e)  = for ec- i~
t~ injure

t0 J  L trans
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(21b) f (P
1
uP
2
) = f (P1) A f ( P 2 )

f (P1 
0 P2 ) = f(P1) 

0 f(P 2 )

I \ -c.I
= .i.~ P1) .

We call a path p = e1, e2, . . ., ek in G a t1 -path If

effect(e .) € [injure,trans) for 1 < j  < k and the number of edges e .

such that effect(e~ ) = injure is i . We call a path p a g1 -path

if it can be partitioned into p = p1,e,p2 , where effect(e) = gen

and p2 is a t . -path . We ca.ll a path p an w -path if It can be

partitioned into p = p1,e,p2 , where effect(e) = kill and p is a

t. -path for some I

Lemma 11. Let P be a path expression . Then

(I) f (P )  = g if there Is a bound b such that every path in ~ (P )

is a g. -path with I < b

(ii) f(P) = to if there is a bound b such that every path in c(~

is either a g. -path with I < b or a to -path, and a ‘I)

contains at least one t0 path.

(iii) f (P )  = t0 if there is a bound b such that every path in a(f

is either a g1 -path with i < b or a t1 -path witb I < b

and a(P) contains at least one t . -path with I > 0

(iv) f (P)  = w in all other cases. ( For any bound b , c(P)  c~~ tains

either a g1 -path with I > b , a t~ -path with I > 0 , or

an w - path.)

Proof. Straightforward but tedious, by induction on the :~urn~ ~- r of

operation symbols in P . 0
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Theorem 9. For each vertex v in G , let P(s ,v) be a path expression

representing all paths from s to v in G . Then ~ is implicitly

available at v if and only if f(P(s,v)) g

Proof. Immedi at e from Lemma U.

Actual occurrences of the implicit availability problem usually

involve a number of expressions. We can perform the computation

associated with Theorem ~ in parallel for all the expressions by using

bit vector operat ions. Since D contains four element s, we need two

bit vectors for each value computed (rather than the three proposed by

Fong [8] ) .  By adding an additional element to D we can compute the

explicitly available expressions (those available with no injuries) in

addition to the implicitly available ones.

~) 
1~

_ _

~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~~~~~~~~



Remarks.

We have shown how to use path expressions to solve three kinds of

path problems on directed graphs . Our results allow us to build a

general algorithm for solving path problems on directed graphs; to solve

a particular path problem, we merely interpret U , • , and *

appropriately. We can base such an algorithm on Gaussian or Gauss - Jordan

elimination [21],. Tarjan [30] discusses another algorithm, which is

especially efficient on reduc ible and almost-reducible graphs [15 ,28].

Our results serve to formally justify the empirical observation

that the same algorithms work on many different path problems . There

are of course algorithms that solve only a particular kind

of path problem, such as Dijkstra t s [6] and Fredman ’s [12 ] shortest

path algorithms and Pan’s improvement to Strassen’s algorithm for solving

linear equations [‘,,22,26]. However, any algorithm able to compute path

expression s also solves all the path problems we have considered here .

Our ideas extend easily to matrix multiplication problems and to

problems requiring the transitive closure of a matrix. See .Aho, Hopcroft ,

and Ullman [1] and Lehman [21] for discussions of such problems.
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Appendix: Graph-Theoretic Definitions

A directed graph 0 = (v,E) is a finite set V of vertices and a

finite set E of edges such that each edge e has a head h(e) € V anci

a tall t ( e )  € V . We regard the edge e as leading from h ( e )  to t ( e )

A path p = 
~~~~~~~~~~~~~ is a sequence of edges such that t(e1) = h(e 1÷1)

for 1 < i < k-l . The pat h is from h( e1) to t ( e k ) • The path contains

edges e
l,

eC,...,ek and vertices h(el), h(e2),...,h(ek), t(ek) , and

avoids all other edges and vertices. There is a path of no edges from

any vertex to itself. A cycle is a non-empty path from a vertex to

itself.

If there is a path from a vertex v to a vertex w , then w is

reachable from v . A flow graph G = (V,E,s) is a graph containing

a distinguished start vertex s such that every vertex is reachable

from s

A simple path p is a path containing no vertex twice. For k 
~ 
1

a k-simple i ath is a i~ath c~ - . aining no vertex k+1 times. Thus a

i-simple ‘~ath i~ sir ~ip1e. A k-semi-simple path is a path p that can

be partitioned as p = p1, e,p~ , where p is simple, e is an edge,

and 
~ 2 is k-simple.

36

- , 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Acknowledgement.

My thanks to Fran Berman for extensive and illuminating discussions

of these ideas .

37

- --—-—5-—- ——, ‘—5— -5 -5—— - ——5-- ---- — -.5- — -  ,~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



-5 - -w- ----- 
~~~~~~~~~~~~~~

Refe renc es

[1] A. V. Aho, J. E. Hopcroft , and J. D. Uliman, The DesIgn and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1971+, 195-206.

[2] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-
Wesley, Reading, Mass.,  1977, 1+08-517.

[3] H. C. Backh ouse and B. A. Carré, “Regular algebra applied to
path-finding problems, ” J. Inst. Maths. Applics. 15 (1975), 1C1-lIl.

[ 1+] J . H. Bunch and J. E. Hopcroft , “Triangular factorizatlon and
inversion b y fast matrix multiplication, ” Math. Camp. 28 (1971+),
C31-23~~.

[5] P .  Cousot and. R . Cousot, “Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation

of fix~ oints ,” Conf. Record of the Fourth ACM Symp. on Principles of
Prog. Lang. (1977), 25 8-252.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Wum. Math. 1 (1959), 26-9-2 71.

[7] H. Fioy—l, “Algorithm 97: shortest path,” Conm. ACM 5 (19L2), 31+5.

[3] A. C. Fang, “Generalized common subexpressions in very high level

languages,” Conf. Record of the Fourth ACM Symp. on Principles of

Frog. Lang. (1977), 1+6-57.
[9] A. C. Fang, J. B. Kmn, and J. D. Uliman, “Applications of lattice

algebra to loop optimization,” Conf. Record of the Second ACM Symp.

on Principles of Frog. Lang. (1975), 1-9.

[12] L. F. Ford, Jr . and D. R. FuJ.kerson, Flows in Networks , Princeton
ilnivercity Press, Princeton, I:.J., 1962, 130-131+.

[U] -S. F. Forsythe and. C. B. Moler, Computer Solution of Linear Algebraic

Equations, Irentice-EaJ.l, Englewood Cliffs, :hJ., 1967, 27-36.
[12] M. L. Freds~ian, “Me-.-~ bounds on the complexity of the shortest path

pr oblem , ’ C12SI J. Comput. 5 (l976~ , 83-39.
[13] - . L. Craham and 2. Weguan, “A fast and. usually linear algorithm for

global flow analysis,” Journ a ACM 23 (1976), 172-202.

[11+ ] 1. 2. iiocht , Flou Analysis of Computer Program s, Elsevier, New York,

1977.

38

-s 5- - - ~~~ ,s~~~~~~~~ ’ “ - . .-~~~~~~ ~~~~~~~~~~~~~~



- - --
~~~~~~~~~~~ _______________________________

[15 ] M. S. Hecht and J. D. Uflman, “Flow graph reducibility,” SIAN J.

Coniput. 1 (1972), 188-202 .

[i6 ] J. B. Kam and J. D. Uliman, “Global data flow analysis and iterative

algorithms,” Journal ACM 23 (1976), 158-171.

[17] 3. B. Kam and J. D. Uliman, “Monotone data flow analysis frameworks, ”

- Acta Info . 7 (1977), 305-317.

[18] K. W. Kenned~r, “Node listings applied to dat a flow analysis, ”

Conf. Record of the Second ACM Syx.~~ on Principles of Prog. Lang.

(1975), 10-21.

[19] G. A. Kilda.ll, “A unified approach to program optimization,”

Conf. Record of the ACM Syinp. on Principles of Prog. Lang. (1973),

10-21.

[20 ] S. C. KLeene , “Represent ation of events in nerve nets and finite

automata,” Automata Studies, C • E. Shannon and J. McCarthy, eds.,

Princeton University Press, Princeton, N.J. (1956), 3-1~O.

[21] D. J. Lehman, “Algebraic structures for transitive closure,”
Theoretical Comp. Sd. 1+ (1977), 59-76 .

[22] V. Y. Pan, “Strassen ’s algorithm is not optimal: trilinear techni que

of aggregating uniting and canceling for constructing fast algorithms
- for matrix operations, ” Proc. 19th Annual Symp. on Foundations of

Computer Science (1978), 166-176 .

[23 ] 3. K. Rosen, “Monoids for rapid data flow analysis, ” Research Report

BC 7032 IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.
(1978).

[21~] A. Salanaa, “Two complete axiom systems for the algebra of regular

events,” Journal ACM (1966), 15 8-169.

[25 ] M. Schaefer, A Mathematical Theory of Global Program C~ timization,

Prentice-Hall, Englewood. Cliffs, N.J., 1973.

[26] V. Strassen , “Gaussian elimination is not optimal,” Num. Math. 13

(1969), 351+-356.
[27 1 G. Szüz , Introduction to Lattice Theory, B. Ba.lkay and G. Tóth ,

trans., Academic Press, New York, 1963, 38~1~2, 59-60.

[28] B. E. Tarj an, “Testing flow graph reducibility, ” J. Comp. Sys. Sd.

9 (1971+), 3.55-365 .

39

A



[29] R. E. Tarjan, “It erative algcrithms for global flow analysi s, ”
ALgorithms and Complexity: New Directions and Recent Results,

J. F. Traub, ed., Academic Press, New York, 1976, 91-102.

[30] R. E. Tarjan, “Fast algorithms for solving path problems, ” Journal ACM,

submitted.

[31] ,j. D. ijilman, “Fast algorithms for the elimination of conmon

subexpressions, ” Acta Info. 2 (1973), 191-213 .
[32] S. Warshall, “A theorem on Boolean matrices, ” Journal ACM 9 (1962),

11-12.

[33] B. Wegbreit , “Prop erty extraction in well-founded property sets, ”

IEEE Trans. on Software Engineering 1 (1975), 270-265 .

-— 5---— -- -~~~~~~ — -~~~~~~~~ - .----~~~~~~ -—~~~~~~ -— -5 - -~~~~~~~~-~~~~~~~~~~~~~~~~ -5 - -5 - - - s -5- —-~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ —


